Potential operators associated with Jacobi and Fourier–Bessel expansions
نویسندگان
چکیده
منابع مشابه
Periodic Jacobi-Perron expansions associated with a unit
We prove that, for any unit in a real number fieldK of degree n+ 1, there exits only a finite number of n-tuples in K which have a purely periodic expansion by the Jacobi-Perron algorithm. This generalizes the case of continued fractions for n = 1. For n = 2 we give an explicit algorithm to compute all these pairs.
متن کاملMaximal Operators Associated with Generalized Hermite Polynomial and Function Expansions
We study the weak and strong type boundedness of maximal heat–diffusion operators associated with the system of generalized Hermite polynomials and with two different systems of generalized Hermite functions. We also give a necessary background to define Sobolev spaces in this context.
متن کاملSubmajorization inequalities associated with $tau$-measurable operators
The aim of this note is to study the submajorization inequalities for $tau$-measurable operators in a semi-finite von Neumann algebra on a Hilbert space with a normal faithful semi-finite trace $tau$. The submajorization inequalities generalize some results due to Zhang, Furuichi and Lin, etc..
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2015
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2014.08.023